Febrile Urinary Tract Infections in Children

Giovanni Montini, M.D., Kjell Tullus, M.D., Ph.D., and Ian Hewitt, M.B., B.S.

A CUTE PYELONEPHRITIS IS THE MOST COMMON SERIOUS BACTERIAL INFECTION in childhood; many affected children, particularly infants, have severe symptoms. Most cases are readily treated, provided diagnosis is prompt, though in some children fever may take several days to abate.

Approximately 7 to 8% of girls and 2% of boys have a urinary tract infection during the first 8 years of life.1,2 Febrile urinary tract infections have the highest incidence during the first year of life in both sexes, whereas nonfebrile urinary tract infections occur predominantly in girls older than 3 years.5 After infancy, urinary tract infections confined to the bladder are generally accompanied by localized symptoms and are easily treated. In contrast, the presence of fever increases the probability of kidney involvement (sensitivity, 53 to 84%; specificity, 44 to 92%)3 and is associated with an increased likelihood of underlying nephrourologic abnormalities and a greater risk of consequent renal scarring.4

Kidney scarring related to urinary tract infection has been considered a cause of substantial long-term morbidity.5 Thus, children with proven infections have been intensively evaluated and treated, and they have often undergone surgery or have received long-term antibiotic prophylaxis.3,6 Such approaches have been questioned.7,8 A number of trials have been conducted or are under way to determine optimal approaches to the assessment and management of initial febrile urinary tract infections and subsequent interventions for them. This review summarizes the diverse views on this controversial topic.

BACKGROUND

Antibiotic treatment of children with febrile urinary tract infections has almost eliminated the risk of death, which was approximately 20% among children hospitalized for acute pyelonephritis in the early 20th century.9 Some 50 years ago, one study described renal parenchymal injury in 210 of 597 children treated for recurrent urinary tract infections.10 Another study in that era reported on an 11-to-27-year follow-up of 72 children hospitalized for urinary tract infections; 18% had died, 8% had progressive renal insufficiency, and 22% had persistent untreated or recurrent infection.11 Both studies assumed that kidney damage was related solely to urinary tract infection, overlooking the possibility that congenital renal abnormalities contributed to these outcomes. In the early 1970s, the evolving concept of reflux nephropathy linked vesicoureteral reflux to pyelonephritis and late renal scarring.12 Consequently, children who had had febrile urinary tract infections were routinely evaluated for urinary tract abnormalities and often received long-term antibiotic prophylaxis10,13; surgical correction of vesicoureteral reflux became standard care.14
In the 1980s, two randomized, controlled trials comparing antibiotic prophylaxis alone with surgical correction alone or in combination with adjuvant prophylaxis had similar results in the medical and surgical groups. One of these studies showed a high prevalence of scarring (38%) before treatment commenced, whereas rates of new scarring and progression of existing scarring were low (2% and 9%, respectively) and were unrelated to persistent reflux or breakthrough infections. Such results highlight an important issue: the distinction between primary renal damage that precedes infection and scars related to urinary tract infection. Primary renal damage is linked to prior obstruction, genetic and developmental factors that result in maldevelopment (hypoplasia) of the urinary tract, or both. However, inflammatory processes (pyelonephritis) that occur in the context of infection may also produce scars.

Improved antenatal ultrasonographic techniques have resulted in frequent recognition of kidney and urinary tract abnormalities in utero. By the mid-1980s, major renal defects and hypoplastic kidneys, which are often accompanied by vesicoureteral reflux, could be identified before birth. Now, in contrast to earlier studies that suggested that acquired pyelonephritis-associated damage was the most common cause of chronic kidney disease in children, adequate antenatal ultrasonographic studies show that intrinsic disease was probably involved. Population-based studies in the present era, in which prenatal ultrasonographic studies are common, identify increasing numbers of children with congenital renal anomalies and reflux.

LONG-TERM CONSEQUENCES

Approximately 60% of children with febrile urinary tract infections, if evaluated during or just after the infection, have visible photon defects on renal scintigraphic studies with technetium-99m-labeled dimercaptosuccinic acid (DMSA) — findings considered evidence of parenchymal localization (pyelonephritis). Of these, 10 to 40% will have permanent renal scarring, unrelated to age. The long-term medical risks of infection-related scarring in previously healthy kidneys are incompletely understood. Few population-based, follow-up studies have been performed. A Swedish study followed 57 children with non-obstructive renal scarring and 51 matched subjects without renal scarring at urographic examination, 16 to 26 years after a first symptomatic urinary tract infection. Children with unilateral scars and those without scars had similar glomerular filtration rates at the end of follow-up; however, the median glomerular filtration rate in seven children with bilateral scars decreased from 94 ml per minute per 1.73 m² of body-surface area to 84 ml per minute per 1.73 m². No difference in ambulatory 24-hour blood pressure was found between children with scars and those without scars.

The few prospective studies that have been performed showed a low rate of long-term consequences. In the International Reflux Study in Children, hypertension was reported in 4 of 252 patients (1.6%) with reflux, mainly grade IV, prospectively followed for 10 years. (The classification of vesicoureteral reflux is explained in Fig. 1.) One of the 133 children whose glomerular filtration rate was measured had a clearance that had fallen below the minimal study entry level of 70 ml per minute per 1.73 m². Most of the prospective studies are limited by relatively short follow-up.

In contrast, retrospective studies have suggested that renal scarring related to urinary tract infection carries a clinically significant risk, with high subsequent rates of chronic kidney disease (up to 20%), hypertension (20 to 40%), and preeclampsia (10 to 20%). Such retrospective studies are limited by referral bias in that specialized centers may not see the vast majority of children, who have uncomplicated febrile urinary tract infections. In addition, some retrospective studies recruited patients before the widespread availability of prenatal ultrasonographic screening. Furthermore, other studies assumed that all patients with chronic kidney disease and vesicoureteral reflux had had undiagnosed urinary tract infections in the past.

Registries of children with end-stage renal disease or with transplants generally list primary renal diseases. The North American Pediatric Renal Trials and Collaborative Studies list primary diagnoses for 9854 children who had received transplants over the previous 20 years — 16% had hypoplasia, 16% obstructive uropathy, and 5% reflux nephropathy. These data highlight the recognition of congenital damage as a cause of chronic kidney disease. However, such registries do not specifically address febrile urinary tract infections.
tract infections as a risk factor for chronic kidney disease, and the data on primary diseases are retrospective and are not diagnostically uniform.

PATHOPHYSIOLOGY OF PYELONEPHRITIS AND SCAR FORMATION

The kidneys and the urinary tract are usually germ-free. When bacteria enter, a number of conditions may develop. Some children will have asymptomatic bacteriuria and some cystitis with inflammation, mainly in the bladder mucosa, but a few children will have febrile urinary tract infections, with systemic activation of the inflammatory process.9

Most children with primary immunodeficiency diseases do not appear to be prone to urinary tract infections. Even children with primary antibody-deficiency states, who have frequent bacterial infections,36 as well as those with severe combined immunodeficiency syndromes affecting both T-cell and B-cell function, have few urinary tract infections. When urinary tract infections develop in such children, associated renal tract abnormalities usually appear to play a role,37,38 indicating that adequate urine flow and intact uroepithelium are key in the prevention of urinary tract infections.

Certain bacteria have characteristics that favor the establishment of infection. For example, *Escherichia coli* bacteria have P fimbriae that facilitate uroepithelial attachment, even in the presence of adequate urine flow.39 In children with kidney malformations, who may have abnormal urinary flow, residual urine after voiding, or both, even nonattaching bacteria may cause infection.40

When bacteria invade the kidney, localized inflammation develops, triggering the innate immune system through multiple pathways. It is well recognized that toll-like–receptor signaling after recognition of bacteria41 initiates an immune response involving nuclear factor κB and the production of cytokines and chemokines42,43 (Fig. 2). If a renal parenchymal infection is limited in extent and duration, full recovery can occur. However, continued inflammation may lead to scarring, though predisposing factors are not well understood. Although polymorphisms in vascular endothelial growth factor and transforming growth factor β1,44 as well as ethnic group,45 have been proposed as risk factors for renal scar-
ring, studies are inconclusive and lack validation sets.

An improved understanding of the pathogenesis of renal scarring related to urinary tract infection would logically lead to the development of adjunctive treatment strategies. Studies in animal models have shown that glucocorticoids inhibit infection-related renal scarring. One study involving children with acute pyelonephritis showed that dexamethasone significantly decreased urinary levels of interleukin-6 and interleukin-8, suggesting a possible role for glucocorticoids in the prevention of scar formation. However, definitive studies are lacking.

Treatment of an Acute Episode

Antibiotic treatment is the cornerstone of treatment for acute urinary tract infections and is important for preventing parenchymal localization of the infection. Until the mid-1990s, there was little agreement regarding the choices of antibiotic, mode of administration, and duration of therapy. Between 1995 and 2001, four studies compared longer courses (7 to 14 days) of intravenous antibiotic therapy with shorter courses (3 to 4 days) followed by oral treatment. A systematic review of these studies showed no difference in rates of subsequent renal damage, irrespective of the duration of intravenous therapy. In a 1999 study, Hoberman et al. compared 3 days of intravenous cefotaxime with 11 days of oral cefixime with 14 days of oral cefixime alone in 306 children 1 to 24 months of age; there was no difference in outcome. A more recent study involving 502 children 1 month to younger than 7 years of age had similar results. In both studies, treatment was administered after a first febrile urinary tract infection. Thus, it appears that oral antibiotics may be appropriate in children older than 1 month of age who have had a first febrile urinary tract infection.

The American Academy of Pediatrics currently recommends that parenteral antibiotic therapy and hospitalization be considered for children who appear to be severely ill or dehydrated or who are unable to retain oral intake. The organization suggests considering outpatient parenteral antibiotics when a child is vomiting but does not appear “toxic,” or when nonadherence is a concern. The choice of antibiotics depends on resistance patterns in a given institution or region. Cephalosporins and amoxicillin–clavulanic acid are the oral antibiotics most often used. When intravenous treatment is required, no particular antibiotic has been shown to be superior; cephalosporins and aminoglycosides are frequently recommended. Table 1 lists antibiotics commonly used for febrile urinary tract infections.

<table>
<thead>
<tr>
<th>Interventions After Urinary Tract Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic Prophylaxis</td>
</tr>
</tbody>
</table>
| Antibiotic prophylaxis was first used empirically in the 1950s, but the first controlled trials of prophylaxis did not occur until the late 1960s. Three small studies compared prophylaxis with placebo or no treatment; results were inconclusive. Between 2006 and 2010, six prospective, randomized, controlled trials that compared prophylaxis with no therapy were published. Important in considering these studies is the degree of vesicoureteral reflux (Fig. 1). Four studies involved a total of 899 children assigned to prophylaxis or no prophylaxis for 12 to 24 months; most did not have vesicoureteral reflux or had reflux up to grade III. All four studies showed that the rates of recurrent, symptomatic urinary tract infections were similar in the two groups, and two of the studies showed that grade III reflux was associated with a trend toward an increased likelihood of recurrent urinary tract infections in the no-prophylaxis groups; however, the studies were insufficiently powered for an analysis according to the grade of reflux. In two of the four studies, scarring from recurrent pyelonephritis occurred during follow-up in 1.4 to 5.9% of the randomized population. All four studies were underpowered and unblinded. Furthermore, the results cannot be generalized to children with grade III to V reflux. The Prevention of Recurrent Urinary Tract Infection in Children with Vesicoureteral Reflux and Normal Renal Tracts study (PRIVENT; Australian New Zealand Clinical Trials Registry number, ACTRN1260800470392), in which 576 children were randomly assigned to receive prophylaxis or placebo for 12 months, addressed many shortcomings inherent in earlier trials. The primary
Figure 2. Pathophysiology of Acute Pyelonephritis.

Acute pyelonephritis occurs when bacteria ascend to the kidneys, causing intrarenal infection. *Escherichia coli* bacteria with P fimbriae attach to uroepithelial cells and cannot be flushed out. The endotoxin (lipopolysaccharide) of the bacteria binds to CD14 on the cell surface, activating toll-like receptor (TLR) 4. Through subsequent steps, this activates transcription factor nuclear factor κB (NF-κB), which migrates into the cell nucleus, stimulating production of inflammatory factors, including cytokines, chemokines, nitric oxide, and transforming growth factor β. These mediators induce an inflammatory response, which increases vascular permeability and recruitment of neutrophils to resolve the infection, but the mediators are also responsible in part for the ensuing kidney scarring. COX-2 denotes cyclooxygenase-2, I-κB inhibitory protein κB, TGF-β transforming growth factor β, and TNF-α tumor necrosis factor α.
outcome was a symptomatic urinary tract infection. Recurrent urinary tract infection was diagnosed in 13% of the antibiotic group and 19% of the placebo group, and significant between-group differences were seen for both symptomatic and febrile urinary tract infections. The authors state that at 12 months, prophylaxis would have been required in 14 patients (95% confidence interval [CI], 9 to 86) to prevent one urinary tract infection. However, 17% of the study participants were not evaluated for reflux, and 49% of those who were did not have reflux. Furthermore, there was inadequate power to evaluate children according to the grade of reflux. Thus, as acknowledged by the authors, the benefit of prophylaxis in preventing kidney damage remains speculative, given the modest reduction in the risk of urinary tract infection and low risk of damage after a single infection.

In the recent Swedish Reflux Trial, 203 children (128 girls) 1 year of age with grade III or IV reflux were randomly assigned to one of three approaches — antibiotic prophylaxis, endoscopic correction of reflux, or surveillance — and followed for 24 months. There was a high rate of recurrent febrile urinary tract infections among girls (with 67 such infections) but not among boys (8 infections). Girls who received antibiotic prophylaxis and those who received endoscopic treatment had lower recurrence rates (19% and 23%, respectively) than those in the surveillance group (57%, P<0.001). New scarring was noted in 2 boys and 13 girls. Of the girls with new scars, 8 were undergoing surveillance and 5 had undergone en-

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intravenous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>12.5–45 mg per kg of body weight four times per day</td>
<td>Increasing resistance</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>30–50 mg per kg three times per day</td>
<td>Good coverage for pseudomonas</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>50–75 mg per kg once daily or 25–37.5 mg per kg twice per day</td>
<td>Advantage of once-daily dosing; contraindicated in neonates, especially premature infants</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>2–2.5 mg per kg three times per day</td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>7.5 mg per kg twice per day</td>
<td></td>
</tr>
<tr>
<td>Piperacillin–tazobactam</td>
<td>2–9 months of age: 80 mg of piperacillin and 10 mg of tazobactam per kg three times per day; more than 9 months of age: 100 mg of piperacillin and 12.5 mg of tazobactam per kg three times per day</td>
<td>Broad spectrum of bactericidal activity</td>
</tr>
<tr>
<td>Oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim–sulfamethoxazole</td>
<td>4 mg per kg twice per day (dose expressed in trimethoprim-equivalent units)</td>
<td>High resistance rates; risk of allergic reaction</td>
</tr>
<tr>
<td>Amoxicillin–clavulanic acid</td>
<td>45 mg per kg twice per day (dose expressed in amoxicillin-equivalent units)</td>
<td>Increasing resistance</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefibuten</td>
<td>9 mg per kg once daily</td>
<td>Increasing resistance</td>
</tr>
<tr>
<td>Cefixime</td>
<td>8 mg per kg once daily</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>10–20 mg per kg twice per day</td>
<td>A second choice for the treatment of complicated urinary tract infections; increasing resistance; increased risk of musculoskeletal adverse events</td>
</tr>
</tbody>
</table>

* Dosages are in accordance with product monographs approved by the Food and Drug Administration and compiled by the drug manufacturers. The monographs are available at www.drugs.com. The doses listed may vary from those used at some institutions and in some clinical trials; always consult current product monographs, with particular attention to the maximum recommended dose.
doscopic correction; none of the girls in the prophylaxis group had scarring (P=0.02).67 Although the target number of 300 children was not achieved,68 the Swedish Reflux Trial supports a role for prophylaxis in girls younger than 4 years old with grade III or IV reflux.

On the basis of the studies reviewed here, we would suggest that the role of prophylaxis is questionable in children with no reflux or with grade I or II reflux, given a recurrence rate for infection of 3 to 8% per year without prophylaxis.64 For children with grade III to V reflux, who have a much higher rate of reinfection (28 to 37%),64,66 prophylaxis would seem appropriate, particularly in girls. There are no data on the optimal duration of prophylaxis; in most prospective trials, the treatment period has been 1 to 2 years. A recent meta-analysis of 11 trials involving 2046 patients did not support the use of prophylactic antibiotics.70 That meta-analysis did not include subgroup analysis according to grade of reflux. Studies that evaluate children according to the severity of reflux would be useful.

A North American initiative, the Randomized Intervention for Children with Vesicoureteral Reflux study (RIVUR; ClinicalTrials.gov number, NCT00405704), which is enrolling 600 children 2 to 72 months of age with grade I to IV vesicoureteral reflux after an index febrile or symptomatic urinary tract infection, will probably provide valuable information.71

SURGICAL CORRECTION OF VESICOURETERAL REFLUX

Vesicoureteral reflux can be corrected by surgical reimplantation of the ureter or endoscopic injection of a bulking agent next to the vesicoureteral junction. The reported resolution rate is 98.1% for open surgery (95% CI, 95.1 to 99.1) and 83.0% for endoscopic therapy (95% CI, 69.1 to 91.4) after a single injection.72 Data are limited concerning the durability of endoscopic treatment. The guidelines of the American Urological Association72 recommend continuous antibiotic prophylaxis rather than surgery for nearly all infants with vesicoureteral reflux. For children older than 1 year of age, the guidelines do not recommend surgical intervention routinely but strongly favor surgery for children with higher reflux grades and the presence of scarring. According to these guidelines, antireflux procedures should be considered for breakthrough febrile urinary tract infections or recurrent infections in children receiving prophylaxis, in whom progressive scarring may occur.

ADJUNCTIVE TREATMENTS

Cranberry juice, considered to inhibit bacterial adhesion to uroepithelial cells, has been used for the prevention of recurrent urinary tract infections.73 A Cochrane review showed that ingestion of cranberry products may decrease the number of symptomatic urinary tract infections in women;74; a recent study suggested similar results in children.75 However, standardization of cranberry products is lacking, which makes it difficult to compare study findings.

Circumcision has been shown to be associated with a reduced risk of urinary tract infection (P<0.001).76,77 A meta-analysis showed that the number of circumcisions that would need to be performed to prevent one urinary tract infection was 111 in the general population. The authors suggested that circumcision would provide a net clinical benefit only in boys at high risk for urinary tract infection or in those with high-grade reflux.77

IMAGING AFTER A FIRST FEBRILE URINARY TRACT INFECTION

The best approach to evaluating a child after a first febrile urinary tract infection remains a contentious issue. Ultrasonography, voiding cystourethrography, and renal scintigraphy with technetium-99m–labeled DMSA have been the core imaging methods. The reason for imaging is to detect obstructive malformations, vesicoureteral reflux, and kidney damage, yet consensus on the malformations, grade of reflux, and degree of damage that are important to detect is lacking. Concerns about cystourethrography include the radiation burden (albeit small), the associated pain and distress, and the cost.

ULTRASONOGRAPHY

Ultrasonography is noninvasive and can reveal a variety of anatomical abnormalities. Ultrasonography alone detects vesicoureteral reflux only indirectly. The rate of ultrasonographic detection of grade III to V reflux varies in studies, ranging from 22%, when only dilatation of the urinary tract is defined as abnormal;76 to 67%79 and 86%,80 when other ultrasonographic abnormalities (renal hypoplasia, thickened bladder or pelvis wall, or...
signs of pyelonephritis) are included. However, this imaging technique does not reliably detect low-grade reflux, pyelonephritis, or scarring. In three trials involving a total of 864 children, prospective ultrasonography after an initial febrile urinary tract infection failed to reliably detect changes associated with reflux or subsequent renal damage. Predominantly minor abnormalities were found in 12%, 14%, and 13% of cases and had little influence on subsequent management. A systematic review and a more recent study indicated that approximately 70% of renal and urinary tract anomalies are detected antenatally by means of routine ultrasonography performed during the second and third trimesters of pregnancy.

Given the low rate of detection of clinically significant abnormalities, one approach after an uncomplicated first febrile urinary tract infection in a child under 3 years of age is to ascertain whether a reliable, normal ultrasonographic study performed during the third trimester of pregnancy is available for review. If not, ultrasonography could be performed. If the course of a urinary tract infection is atypical (infection with an organism other than E. coli, a delayed response to appropriate antibiotics, the presence of an abnormal urinary stream, recurrent infection, or evidence of renal functional impairment?), ultrasonography is indicated, in our view. An alternative approach is to perform an ultrasonographic examination of the urinary tract in all children under 2 years of age after an initial febrile urinary tract infection.

VOIDING CYSTOURETHROGRAPHY

Voiding cystourethography generally necessitates instillation of a radiopaque, radioactive, or echocontrast medium into the bladder through urethral catheterization, followed by serial imaging during filling and voiding to determine whether there is vesicoureteral reflux. Most controversy regarding imaging centers on this study. Advocates cite a strong association between the severity of reflux and the presence of renal damage. Most would agree that detecting reflux with associated dilatation remains important, given an increased risk of renal scarring and the ability to intervene medically or surgically in such a situation. Because the presence and severity of reflux can be reliably determined only by means of voiding cystourethography, some advocate performing cystourethography in all children after a first febrile urinary tract infection. Others argue that detection of lower grades of reflux is not essential and support a more selective approach, aimed at detection of higher grades of reflux. This latter approach suggests performing voiding cystourethography if a child has a first febrile urinary tract infection with atypical features — such as abnormalities on antenatal or postnatal ultrasonographic examination, infection with non-E. coli organisms, abnormal urine stream, or evidence of focal scarring. Scintigraphic images courtesy of Dr. Pietro Zucchetta, Nuclear Medicine Department, University of Padua, Padua, Italy.
Renal scintigraphy with DMSA requires the intravenous administration of a radioactive isotope, which is then taken up by the renal parenchyma, permitting the identification of regions of decreased uptake that may represent acute inflammation (as seen in pyelonephritis) or renal scarring. No general anesthesia is required, although a light sedation by means of oral medication is indicated in rare instances. The radiation dose, approximately 1 mSv, is a concern.89,90 This technique can be used in the acute phase of a urinary tract infection to confirm pyelonephritis, or from 6 to 12 months later to determine whether scarring has occurred. The technique may also detect the presence of renal hypodysplasia.82,88 Differentiating renal hypodysplasia from scars related to urinary tract infection is sometimes difficult. A small kidney with uniform uptake of isotope is likely to represent congenital hypodysplasia, whereas a focal area of reduced cortical uptake associated with loss of contours, or the presence of cortical thinning, is likely to represent an infection-related scar78 (Fig. 3).

Renal scintigraphy performed during the acute phase of a urinary tract infection, followed by cystourethrography if the scintigraphic examina-
tion suggests pyelonephritis (once a urine culture is negative), has been referred to as the “top down” approach\(^9,10\) and focuses on putative pyelonephritis and scarring. This approach may decrease the number of cystourethographic examinations performed. Some studies have shown a strong correlation between clinically relevant vesicoureteral reflux with dilatation and abnormal scintigraphic scans,\(^9,10\) though a recent study\(^93\) showed that 30.5% of 46 children with grade III to V reflux had a normal scan during an acute infection.

Some investigators recommend renal scintigraphy 6 to 12 months after an acute infection to detect the formation of scarring, which would require follow-up.\(^8,2,88\)

Other imaging techniques, such as computed tomography and magnetic resonance imaging, may have a role when intrarenal abscesses are suspected or when there is a delayed response to antibiotic treatment\(^94\) (see a recent review of imaging methods for further information\(^95\)).

Most children with an uncomplicated first febrile urinary tract infection have an uneventful recovery. Nevertheless, there remains a lingering concern that if investigations are abandoned, one could miss the few cases in which clinically important urologic or renal problems were not detected with antenatal ultrasonography.

Conclusions

The management of febrile urinary tract infections in children is changing. Oral and intravenous antibiotics appear to be equally effective in most children. Improved prenatal ultrasonography has revealed that major kidney damage in children is frequently related to the presence of hypoplasia, associated with urologic abnormalities (Fig. 4). However, infection-related renal scarring develops in some children; this causes further damage in dysplastic kidneys, with the potential for late effects in previously normal kidneys. The value of antibiotic prophylaxis has been questioned in recent studies (Fig. 4). Further data are needed to determine which children might benefit from antibiotic prophylaxis. Studies in progress may help to answer these questions.

Dr. Montini reports that his prior institution, Azienda Ospedaliera di Padova, has received grant support from AstraZeneca.

No other potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

References

19. Ardissino G, Daccò V, Testa S, et al. Epidemiology of chronic renal failure in...
35. The Australia and New Zealand Dialysis and Transplant Registry. (http://www.anzdata.org.au/)
64. Montini G, Hewitt I. Urinary tract in-

Copyright © 2011 Massachusetts Medical Society.